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Abstract

Gauss quadrature integral approximation is extended to include integrals with a measure
consisting of continuous as well as discrete components. That is, we give an approximation
for the integral of a function plus its sum over a discrete weighted set.
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1. Introduction

Approximating integrals, especially intractable ones, by finite sums is as old of a problem as calculus itself. Most
approximation procedures follow the structure of the original classic discretized approximation of the integral of a real
function f(x) defined in x x x    as
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0

( ) ( )
Nx

n nx
n

f x dx f x








  ...(1)

for some large enough integer N. The accuracy of the approximation and its convergence have always been at the core
of the development of such approximation schemes. One of the most prominent techniques used in these approximations
is the celebrated Gauss quadrature integral approximation (Stroud and Secrest,  1966; Kovvali,  2011; Brass and Petras,
2011). It exploits the orthogonality and recursion relation of orthogonal polynomials. The quadrature has also been
extended to the approximation of infinite sums (see, for example (Moniem, 2010; Engblom, 2006) and references therein).
In this work, we combine the two. That is, we propose an extended Gauss quadrature associated with integral measures
that consist of discrete as well as continuous components. In Section 2, we summarize the conventional Gauss Quadrature
(GQ) integral approximation where the integration measure is purely continuous. In Section 3, we summarize GQ for
approximating infinite sums by finite ones. Finally, in Section 4, we present our main findings where we combine the two.

2. The Conventional GQ: Purely Continuous Measure

Let ( )f x  be an integrable real valued function with respect to the positive measure ( )d x   ( )x dx  in a real
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vector space, which is spanned by the complete set of orthonormal basis  
0

( )n n
p x




, where [ , ]x x x   .

Orthogonality is defined as:

,( ) ( ) ( )
x

n m n mx
x p x p x dx 



 ...(2)

This suggests that we could take ( )np x  to be an orthogonal polynomial of degree n in x with pure continuous
spectrum and where ( )x  is the associated positive weight function (Szego, 1939; Chihara, 2011; Ismail, 2009). The
spectral theorem (a.k.a. Favard’s theorem) dictates that such polynomials satisfy the following symmetric three-term
recursion relation.

1 1 1( ) ( ) ( ) ( )n n n n n n nx p x a p x b p x b p x     ...(3)

for 1,2,3,...n   and where the “recursion coefficients”  ,n na b  are real constants such that 0nb   for all 0n  .

This recursion gives all the polynomials of any degree starting with the two seed values 0 ( ) 1p x   and

1 0 0( ) ( )p x x a b   (i.e., 1 0b  ). Associated with this space is an infinite dimensional real tridiagonal symmetric

matrix (a Jacobi matrix) whose elements are

, , 1 , 1 , 1 ( ) ( ) ( )
x

n m n n m n n m n n m n mx
J a b b x p x x p x dx   


       ...(4a)
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 
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 
    
   

...(4b)

One can easily show that by iterating Equation (4a) for x, 2x , 3x , ... and using the three-term recursion relation (3)
repeatedly, we obtain

 
,

( ) ( ) ( )
x k k

n m n mx
x p x x p x dx J



 ...(4c)

For numerical computations, however, the space is truncated to a finite N-dimensional subspace spanned by

  1

0)( 


N

nn xp . The tridiagonal matrix (4) becomes a finite N x N matrix J. The real N distinct eigenvalues of J, which we

designate as the set   1

0




N

nn , are the zeros of the polynomial ( )Np x  [i.e. ( ) 0N np   ]. Let   1

, 0

N

m n m




  be the

normalized eigenvector of J associated with the eigenvalue n . In this setting, Gauss quadrature integral approximation
states that (Stroud and Secrest,  1966; Kovvali,  2011; Brass and Petras, 2011).
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where the “numerical weights” could be evaluated as 
2
0,n n   . Due to the lower numerical cost in computing matrix

eigenvalues instead of eigenvectors, we can also write these numerical weights in terms of   1

0




N

nn  and another set of

eigenvalues   2

0
ˆ N

m m
 


 as:
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where   2

0
ˆ N

m m
 


 is the set of eigenvalues of a submatrix of J obtained by deleting the first (zeroth) row and first column.

If sorted, these eigenvalues interlace as 0 0 1 1 2 2 1ˆ ˆ ˆ.... N N            . The integral approximation in Equation

(5) becomes exact if ( )f x  is a polynomial in x of a degree less than or equal to 2 1N  . If, instead of the integral in

Equaiton (5), we have ( )
x

x
f x dx




  then this could be approximated as follows:

1 1
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 

      ...(7)

where  n  are named the “derivative weights” and ( )n n n    .

Very often, one encounters integrals that represent matrix elements of functions in the basis set

   ( ) ( ) ( )n nx x p x   (for example, the matrix elements of a potential function in quantum mechanics) of the

form

, ( ) ( ) ( ) ( ) ( ) ( ) ( )
x x

n m n m n mx x
f x f x x dx x p x f x p x dx   

 

   ...(8)

Using Equation (5), this integral is approximated as follows:

1

,
0

( ) ( ) ( )
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n m k n k k m k
k

f p f p   




 ...(9)

Now, it is well established that , 0,( )n k n k kp      for , 0,1,2,.., 1n k N  . Therefore, with 
2
0,k k    this

could be rewritten in matrix form as:

 
1

T
, , , ,

0

( )
N

n m n k k m k n m
k

f f F




      ...(10)

where F is a diagonal matrix with elements , ,( )k j k k jF f   . Therefore, to obtain an approximate evaluation of

integrals using Gauss quadrature associated with orthogonal polynomials satisfying Equations (2) and (3), one needs

only the tridiagonal symmetric matrix J, which is constructed using the recursion coefficients  ,n na b , and possibly

the weight function ( )x  for integrals of the type in Equation (7).

3. GQ for a Purely Discrete Measure

If instead of the integral ( ) ( )
x

x
x f x dx


 , we were tasked with approximating the infinite weighted sum

0
( )k kk

f x

 , for a given discrete set  ,k kx , by a finite sum similar to that of Equation (5). Then, we could
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approach the solution to the problem as follows. We can convert the integral ( ) ( )
x

x
x f x dx


  into the sum

0
( )k kk

f x

  by discretizing the weight function and writing 
0

( ) ( ) ( )kk
x x x x  


   with ( )k kx  .

Performing this same weight function discretization in the orthogonality (2) turns it into

,
0

( ) ( )k n k m k n m
k

p x p x 




 ...(11)

There are many discrete polynomials that satisfy this kind of orthogonality. The Appendix lists relevant properties
of few of these discrete hypergeometric orthogonal polynomials that belong to the Askey scheme (Koekoek et al.,
2010). Some of these polynomials constitute an infinite discrete sequence whereas others form finite sequences.
Examples of the former are the Charlier and Meixner polynomials, whereas the Krawtchouk polynomial is an example of
the latter (Koekoek et al., 2010). All these polynomials do satisfy symmetric three-term recursion relations similar to
Equation (3) that read

1 1 1( ) ( ) ( ) ( )k n k n n k n n k n n kx p x a p x b p x b p x     ...(12)

Consequently, we can write the following approximation

1

0 0

( ) ( )
M N

k k n n
k n

f x f  


 

  ...(13)

where M can be a finite or an infinite integer depending on the spectrum size of the polynomials  ( )n kp x . However,,

typically M N  otherwise the approximation is not called for. Moreover, the set   1

0
,

N

n k n
  


 in  Equation (13) are

calculated using the tridiagonal symmetric matrix J obtained from Equation  (12) exactly as in Section 2 and shown by
Equation (4b). Additionally, the approximation in Equation (13) becomes exact if ( )f x  is a polynomial in x of a degree

less than or equal to 2 1N  . Here too, if instead of the sum (13) we have 
0

( )
M

kk
f x

 , then we can write

1

0 0

( ) ( )
M N

k n n
k n

f x f 


 

   ...(14)

where the derivative weights are calculated as ( )n n n    . As an example, we consider the function

( ) ( 1)xf x r x    with ( , ) 0x r   and obtain the approximation of its infinite sum in Equation (14) using GQ

associated with the Charlier and Meixner polynomials. Since 0,1,2,...kx k   for both polynomials, then the

GQ N  = 2 N  = 4 N  = 7 N  = 10 N  = 15

Charlier 5.694 x 10-3 6.525 x 10-6 4.165 x 10-11 2.653 x 10-16 8.844 x 10-17

Meixner (b  = 0.2) 6.943 x 10-3 1.231 x 10-4 1.964 x 10-7 1.522 x 10-10 1.946 x 10-15

Meixner (b  = 0.4) 3.900 x 10-2 2.272 x 10-3 3.192 x 10-5 8.121 x 10-7 1.1969 x 10-9

Meixner (b  = 0.6) 9.541 x 10-2 5.266 x 10-3 1.131 x 10-3 2.588 x 10-5 8.008 x 10-6

Table 1: Relative Error in the Evaluation of the Infinite Sum in Equation (14) for the Function

( ) ( 1)xf x r x    with 3.0r   Using Gauss Quadrature Associated with the Charlier and Meixner

Polynomials for Several Values of N. The Polynomial Parameter  is fixed as  for both Polynomials.
However, we took Several Values for the Meixner Polynomial Parameter b. The Relative Error is Calculated as

r
r

e
e

 , where  is the Gauss Quadrature Sum. For Numerical Computations, we used Mathcad Software

Version 14.0 with Single Precision
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infinite sum has the exact value re . Table 1 demonstrates the validity of formula (14) and illustrates the relative
accuracy and convergence associated with the two polynomials for this particular function. In another example, we

consider the finite sum in Equation (14) for the function 1( ) ( 1) ( 2)xf x x r x r      with 100M   and

employ GQ associated with the finite Krawtchouk polynomial. Since kx k , then this finite sum has the following
exact closed form (see formula 3, Section 1.3.9 in Zwillinger (2003))

1 2

0

( 1) 1

( 2) ( ) ( 2)

k MM

k

k r r

k r r M r

 




 

       ...(15)

Table 2 demonstrates the validity of formula (14) and illustrates its accuracy as well as its convergence as we vary
N and the Krawtchouk polynomial parameter .

Table 2: Relative Error in the Calculation of the Finite Sum in Equation (14) for the Function
1( ) ( 1) ( 2)xf x x r x r      with 3.0r   using Gauss Quadrature Associated with the Krawtchouk

Polynomial for M = 100 and for Several Values of N. We took Several Values for the Polynomial Parameter . The

Relative Error is calculated as 
Exc
Exc


 , where Exc Stands for the Exact Value Obtained by Formula (15) and  is

the Gauss Quadrature Sum

 N  = 10 N  = 20 N  = 30 N  = 40 N  = 50

0.01 4.002 x 10-11 7.725 x 10-13 9.770 x 10-15 2.220 x 10-16 5.329 x 10-15

0.10 3.600 x 10-2 8.826 x 10-6 2.469 x 10-11 6.222 x 10-12 5.390 x 10-13

0.20 8.514 x 10-1 4.065 x 10-2 1.075 x 10-4 9.438 x 10-9 1.799 x 10-14

0.30 9.999 x 10-1 6.666 x 10-1 4.314 x 10-2 2.807 x 10-4 8.968 x 10-8

4. GQ for a Measure with a Mix of Continuous and Discrete Spectra

If the integral measure ( ) ( )d x x dx   contains a mix of discrete as well as continuous spectra, then the weight
function could be written as follows:

0

( ) ( ) ( ) ( )
M

k
k

x x x x x   


   ...(16)

where ( )x  is the continuous component of the weight function and ( ) :k kx   is the discrete component. The

discrete spectrum (a.k.a. mass points or bound states) is the set  
0

M

k k
x


 of size 1M  , which could be finite or

infinite. The orthogonality Equation (2) becomes (Szego, 1939; Chihara, 2011; Ismail, 2009).

,
0

( ) ( ) ( ) ( ) ( )
Mx

n m k n k m k n mx
k

x p x p x dx p x p x  

 

  ...(17)

These polynomials do also satisfy a symmetric three-term recursion relation similar to Equation (3) where the
associated infinite tridiagonal symmetric matrix J is endowed with both continuous as well as discrete eigenvalues.
Appendix A lists the relevant properties of two of these hypergeometric orthogonal polynomials that belong to the
Askey scheme (Koekoek et al., 2010).

If the function ( )f x  is defined over  
0

[ , ]
M

k k
x x x x  
   then Gauss quadrature integral approximation in

Equation (5) could be extended for this scenario to read

1

0 0

( ) ( ) ( ) ( )
M Nx

k k n nx
k n

x f x dx f x f   





 

   ...(18)
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where the set   1

0
,

N

n k n
  


 in Equation  (18) are calculated using the tridiagonal symmetric matrix J exactly as in Section

2. Here too, the integral approximation in Equation (18) becomes exact if ( )f x  is a polynomial in x of a degree less than

or equal to 2 1N  . If the sum in Equation (18) is finite such that M is of the same order as N (i.e., M N ), then one

could think of Equation (18) as an integral approximation by the difference between two finite sums as follows:

1

0 0

( ) ( ) ( ) ( )
N Mx

n n k kx
n k

x f x dx f f x   





 

   ...(19)

As an example, we consider the function 2( ) m xf x x e  where m is a positive integer and obtain an approximation

of its integral-sum in Equation (18) using GQ associated with the continuous dual Hahn polynomial 2( ; , )nS x    with

a mixed spectrum (i.e., 0  ). Since the polynomial argument is not x but 2x and 2 2( )kx k    , then the GQ

integral formula (18) must be revised to read

1
2 2

0
0 0

( ) ( ) ( ) ( )
M N

k k n n
k n

x f x dx f x f   


 

   ...(20)

Table 3 demonstrates the validity of this formula and illustrates its convergence for a given  and several values of

. The GQ result is compared to the exact result 00[ ( )]f J .1

We plan to follow this work by another in which we attempt at approximating the following integral-sum combination
that replaces Equation (18).

Table 3: Relative Error in the Calculation of the Integral-Sum Combination on the Left Side of Equation (20) for

the Function 2( ) m xf x x e  with 3m  . We used GQ Associated with the Continuous Dual Hahn

Polynomial 
2( ; , )nS x    for  3.5    and for Several Values of the Parameter  . The Relative Error is

Calculated as 
Exc
Exc


  where  is the Gauss Quadrature and Exc is 00[ ( )]f J  with a Matrix Size of 200 for J

  N  = 10 N  = 20 N  = 30 N  = 50 N  = 100

1.0 6.752 x 10-5 4.338 x 10-7 1.169 x 10-8 6.258 x 10-11 3.594 x 10-12

2.0 2.012 x 10-3 2.577 x 10-5 9.999 x 10-7 7.667 x 10-9 2.048 x 10-12

3.0 1.713 x 10-2 4.119 x 10-4 2.255 x 10-5 2.584 x 10-7 1.289 x 10-10

4.0 7.529 x 10-2 3.168 x 10-3 2.403 x 10-4 4.043 x 10-6 3.385 x 10-9

5.0 2.197 x 10-1 1.494 x 10-2 1.539 x 10-3 3.743 x 10-5 4.938 x 10-8

1 Using the Orthogonality (17) and in analogy to Equation (4c), we can write

 
,

0

( ) ( ) ( ) ( ) ( )
Mx l l l

n m k k n k m k n mx
k

x x p x p x dx x p x p x J 

 

 
Therefore, if we approximate the function 2( )f x  by a Taylor series up to 2( )lx  then 2( )f x  becomes a polynomial in 2x  of
degree l, which we call 2( )lF x . Thus, we can write

2 2 2 2 2 2

2 2 2
,

0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) [ ( )]

x

l n m l n mx

M

k l k n k m k l n m
k

x F x p x p x dx x F x p x p x dx

F x p x p x F J

 











 

 


Hence, the left side of Equation (20) has the exact value as: 0,0 0,0lim [ ( )] [ ( )]l lF J f J  . To calculate the matrix ( )lF J , we

proceed as follows. Let   1

, 0

K

m n m




  be the normalized eigenvector of the K K  finite submatrix of J corresponding to the

eigenvalue n . Then, we can write ( ) T
lF J W    where W is a diagonal matrix whose elements are: ,n mW   , ( )n m l nF  . For

improved accuracy we take the matrix size K as large as numerically possible.
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1

0 0

( ) ( ) ( )
M Nx

k n nx
k n

f x dx f x f 





 

    ...(21)

where we determine the derivative weights n  in terms of n , ( )n   and ( )n  .
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Relevant Orthogonal Polynomials

In this Appendix, we give the most essential properties of orthogonal polynomials that are relevant to our work. All
these polynomials belong to the hypergeometric class in the Askey scheme (Koekoek et al., 2010). We consider the
orthonormal version of these polynomials. That is, where the corresponding three-term recursion relation is symmetric
as given by Equation (3) and the orthogonality is a pure ,n m  similar to those given by Equations (2), (11) and (17).
Therefore, such polynomials are well-defined once we give the recursion coefficients  ,n na b  and the weight

function ( )x ,  k , or the pair  ( ), kx   corresponding to continuous, discrete, or mixed spectra, respectively..

Moreover, we always take the initial polynomials as 0 ( ) 1p x   and 1( )p x   0 0( )x a b .

A.1 Discrete Weight Function

In this section of the Appendix, we give the essential properties of three of the discrete polynomials. The first two
form infinite sequences whereas the third is a finite sequence. However, all have kx k .

The Charlier Polynomial:

 2 0
,( ) 1

!

n

n
n kC k F

n
     ...(A1)

where 0   and , 0,1,2,...k n  . The recursion coefficients are:

na n   , ( 1)nb n   ...(A2)

The discrete weight function reads as follows:

!k
k e k  ...(A3)

The Meixner Polynomial:

   2 1
2 1

,
  2

(2 )
!; 1n

n
n kn

nM k F


b b b    ...(A4)

where 0  , 1 0b   and , 0,1,2,...k n  . Moreover, , ( ) ( 1) ( 2)...( 1)na a a a a n       
( )

( )
n a

a
 


is the Pochhammer symbol (the shifted factorial). The recursion coefficients are:

(1 ) 2

1n

n
a

b b
b

 


 , ( 1)( 2 )
1nb n n
b


b

   


...(A5)

The discrete weight function reads as follows:

2(1 ) (2 )
!

k

k k k
 b b   ...(A6)

The Krawtchouk Polynomial:

     
2

1
2 1

,!
1!( )!;

n
M
n

n k
M

M
n M nK k F

   
 ...(A7)

where 1 0   and , 0,1,2,..,k n M . The recursion coefficients are

 1 2na M n    , ( 1)( ) (1 )nb n M n       ...(A8)
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The discrete weight function reads as follows:

( 1)
( 1) !(1 )N k

k

kM
M k k

    
    ...(A9)

A.2 Discrete and Continuous Weight Function Mix

In this section of the Appendix, we give the essential properties of two orthogonal polynomials that have either a
pure continuous measure (if 0  ) or a mix of continuous and discrete measures (if 0  ). The discrete spectrum

points for both are 2 2( )kx k    , which is finite and of size equal to     where z    is the largest integer less

than z.

The Continuous Dual Hahn Polynomial:

 2
3 2

( ) ( ) , i , i
   ,! ( )( ; , ) 1n

n n

n

n x x
nS x F    b  

   b b b     
  ...(A10)

It is a polynomial in 2x  of degree n with 0x   and x   . If 0   then  and b must be positive or a
pair of complex conjugates with positive real parts. However, if 0   then    and b   should be positive
or a pair of complex conjugates with positive real parts. The recursion coefficients are

2( ) ( ) ( 1)na n n n n   b  b           ...(A11a)

( 1)( )( )( )nb n n n n b    b         ...(A11b)

The continuous component of the weight function reads as follows:

2
( i ) ( i ) ( i ) (2i )1

( )
2 ( ) ( ) ( )

x x x x
x

  b


    b  b
      


     

...(A12)

The discrete component of the weight function is

 
 

     
   

2( ) ( )
2

( ) (1 2 ) 1 11 !
k k k

k k

k k

k

k

   b   b 
 b     b

     


        ...(A13)

where 0,1,2,..,k     .

The Wilson Polynomial:

   
2

4 3

2 1 ( ) ( ) ( ) ( ) , 1, i , i
, ,1 ( ) ( ) ( ) !

( ; ; , )

1

n

n n n n

n n n

n n n x x
n n

W x

F



   b    b      b    b  
     b   b    b  b

  b

                  
         



 ...(A14)

It is a polynomial in 2x  of degree n with 0x   and x   . If 0   then  , ,  b  should be positive
or complex conjugates with positive real parts. However, if 0   then  , ,  b   must be positive or complex
conjugates with positive real parts. The recursion coefficients are

2( )( )( )( 1) ( 1)( 1)( 1)
(2 )(2 1) (2 1)(2 2)n

n n n n n n n n
n n n na      b    b    b  b

   b    b    b    b                    
                     ...(A15a)

( 1)( )( )( )( )( )( )( 1)
(2 1)(2 1)

1

2n
n n n n n n n n

n nb
n

   b    b    b    b
   b    b   b

                 
          

    ...(A15b)

The continuous component of the weight function reads as follows:
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2
( ) ( i ) ( i ) ( i ) ( i ) (2i )1

( )
2 ( ) ( ) ( ) ( ) ( ) ( )

x x x x x
x

   b    b


    b    b    b
            


           

...(A16)

The discrete component of the weight function is

 (2 ) ( ) ( ) ( )( ) ( ) ( ) ( )
2

( 2 1) ( ) ( ) ( ) ( 1) ( 1) ( 1) !
k k k k

k
k k k

k

k

       b   b     b 
  b   b       b

             


              

...(A17)

where 0,1,2,..,k     .
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